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AIISTRACT

F’rcqumlcy stabilization plays a very critical role in diverse applications such as long

clistancc fiber and free space optical c.ornnm]ications,  intmferornetric  sensing, optical gy-

roscopes, squccmd  states of light,  atomic  bcaln  trapping, and gravity wave detection,

Frequency stabilization can bc a.chievccl  by locking lasers to a Fabry-Perot .etalon. OIIC

possible frequency stabilization technique is to use an oscillator that dithers o: lnodulatcs

the frcqmmcy  of the lasers, The frequency-clithtmd laser light is analyzed via transmission

through the Fabry-Pcxot.  The  output of the ctalon  is detected by a photodetector and then

correlated wit h the dithering oscillator signal to obtain frequency locking error estimates

and subsequently control the frec~uency of the lasers.

A theoretical analysis is performed for a Fabry-Perot frequency stabilization sub-

system, disturbed by shot noise and frequency noise consisting of white, 1/~, and 1 /j2

components. Contributions of the shot noise  and frequency noise components to the to-

t al frequency lc)cking error variance are derived. Given the characteristics of the etalon,

an optimal depth of frcqumcy modulation is calculated for the dithering oscillator that

maximizes the locking error signal amplitude ancl hence results in the best possible locking

pcrfor]nance.  Total frequency locking error  as a function of loop bandwidth is displayed.
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1+’iually, the cxpectccl perfcmnallcc  of all o})tilnizcd  F a b r y - 1 ’ t r o t  stahilizatioll  systcln  is

estilnatcxi,

I’rcquclicy stabilizaticm  ~Jays a very critical roles in applicaticnls such as data colmnu-

l]ication,  L)opplcr  trackiug,  alld ultra-  l)ig]l precision absolute-distal]ce Incasurillg,  where

coherent optical hctcrodyne  dctcctioxl  is utili7)ec{.  ‘l%e recplircvnellt  of the laser freciualcy

stability for coherent optical coll~ll~~lllicatiolls  was illvcstigatcd  in [I], allcl SIIOWII  that tllc

rcquimcl  signal power for, phase lockecl  receiver call be further mcluc.cd  providecl  that

trans!llit  and local oscillator laser are stabilimcl to a external reference. Further more,

c)ptical carrier ca~>able  of a.c.llievillg  silnilar  frequency stability to current-day RF systexn

call potentially offer sigllificallt  irnprovclnent  ill space-craft navigation capabilities [1].

Optimal loop banclwic]th  of the optical phase-locked loop decreases with decreasing

sigllal-to-xloise  ratio [2], ant] therefore cxc.ellcmt frcclucnc.y stability is required in order to

achicvc phase coherent optical hc%mociyne  reception when low signal power reception is

expected. Since  the spectral filtering is perforlned  at illtermcxliate frequency, where the

halldwidth  selection is very effective, hctcrodylle  detection offers a good backgrou~ld  noise

reject ion, Band width select ivc nat urc of cohmwlt  receiver can also lead to a more cfflcicnt

usc of the optical spectrum and potential for multiple access communication. Similarly

i] 1 high-precision metrology using rnult iple-wavelengt  h interferomet  ry, high] y st able lasser

sources are required to achieve sub- nanornet  er measurements of absolute. dist antes [3, 4]. In

all such applications, frequency of the lasers must bc st abilizecl, at frequencies with relative

ofiscts to each other, over prolcmged  period of time. This can be achieved by locking the

lasers to different order  peaks of a single  Fabry-Perot etalon  (FPE) as described below.

The conceptual design of an FPE two-laser frequency stabilization system is showx~  in

Fig. 1. lhc two laser stabilization systems arc cssclltially  independent and they share  tllc
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single FPE and  single drive oscillator o]] a llc)l~-illtcractil)g  basis. Whether cw not, one laser

is locked to the FPF,  makes no cliffcrencc  to tllc otllcr  laser, a]ld hcv]cc oIlly one systexn

will he discussed in the following.

The  laser frequency is n~oclulated,  at a rate I]]uc1l  higher thall  the basic laser frcqucllcy

jitter, using the signal fron~ the coxnnlon  drive oscillator. After ]Jassillg through  the FPE,

tllc fre(~~lel~cy-ditl~crcd  laser signal is registered by a photodetector, If the laser’s frequency

is accurately locked to the assigned FPE transmission peak, the con~ponel~t  of the pho-

todetector output at the fundamental c)scillator  frequency will k zero, However, a snlall

offset bctwccn  the laser frcqucmcy and tllc trans~nission peak of the FPE will result ill a

ncm-zero  output at the fundanlcntal  frequency. ‘Ile photodetector output is hon~odyned

with drive oscillator signal to derive an cstin~ate  of the laser-vs.-FPll frequency offset, The

resulting error signal is low-pass filtered  and fed hack to the control inputs of the laser to

cflkct a frequency correction, A schen~atic  of this optical frequency locking loop (O IL],)

is showII  ill Fig. 2.

]]. kfA1’}{EMATICA1, IVIO1)EL

The transn~ission  coefficient for a lossless  FF’E can be n~odeled  as

&~; == ‘--–---;- &--
1 +J’sm (T*)’

(1)

where 1’ == (#Z)2 is the coef%cient  of finesse, and ~SR is the free spectral rarige, ‘1’he

finesse > is given by

F =“ ~~:hi , (2)

where  V~wHM is the fullwidth  at half nlaxirnurn  of the FPE tramwnissio]i  peak. The

frequency of the lasers, v, is n~oclelcxl  as

v =- V* -t v, + Al/(t),
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where  vr is the resonance frequency, ve is tllc flequalcy  dcviaticm  frcnn tllc translnissio]l

peak, and Av(i) is the frequency nloclulat  ion.

More specifically, the frequency modulation is nloclclcd as

Av(i) = <~g,,, ~os(~~), (4)

w h e r e  g~, is the nlodulation  depth  a]lc] fl is t]lc n~odulation frccluency  which is Inuch

higher  than the inherent la.scr frequency jitter. 1x1 the followillg,  the  ternls “nlodulation

frequency” and “fundan~ental  frequency “ will he usccl  interchangeably. Equation  (1) is

plotted in Fig. 3 for the custom, hig]l fiIIcssc FPF used in laboratory developnwnt  work.

The cavity length  of this FPE is 5 c.nl, which results in a free spectral range  of 3 C; HZ. The

full width at half rnaxinmrn,  v~w~M, is ex~)erin~entally  nleasurcd  to bg 300 KHz. These

cavity para.n~ctcrs  arc used throughout this paper.

The output of the photodetector is Inoclclcci  approximately as

v(t) == {2A 2~1JE;(Vc,i)  +- n(t), (5)

where the noise ?2(i ) is n~odelcd  as a narrowband  Gaussian ranclonl process. Using equa.t ion

(1 )-(5), the expression for

v(t) =

the photodetector output can bc approximated as

(6)

This n~odcl effectively asw.un~es  that the FPE reacts instantaneou]y  to changes in the

modulation frequency, Q. This assun~ptiol~ is rea.sonablc  if the modulation frequency of

the drive oscillator is Inuch less than V~w}l M. (The finite response  tirnc tof the FPE is,

however, taken into account in deriving the power spectral density of frequency jitter in

A]qwndix  A.)

Figures 4. shows the nornlalized  photodetector output as the laser  is nlodulatcd  by

the drive oscillator, Specifically, the output is plotted as a function of tinlc for the case c~f
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no frequency lockillg  error allcl in tllc abscvlcc of noise. A  sinlilar  ~Jlot is S11OW1I i~l I’ig, 5

for the case whexl sornc frequency locking error  is ]Jresent.  This frequcnc.y  locking error is

responsible for the appearance c)f a fuldamelltal  conlpollcnt  (pericd 0.01 relative units) ill

F’ig. 5.

I I I .  FOLJ}UFX{  FXpANsION  AND OmhfA1j  MODIJLATION  rwl~[

Note that the signal portion of the photodetector output, given by the first ternl  of

the right, hand side of (6) , is periodic with ~wriod 7’ = ~, This periodic.ity suggests

the cxistcncc  of a Fourier series ex~)ansion  for the signal. To extract the error illforn~ation

contained ill each ha,rn~onicj  the photodetector output signal is cxpanclccl  as a trigononlct,ric

The  Fourier cocdlicients  arc given by

1 to+7

~ [ ‘“- “----”--- ‘-”-

1~~=—
Tto ——— 1---- dt ,

1 + F S.nz(n V,+ ~ci”/2$01  C09~f?t)—.. —-. . . . . —.. __ __
~FSR )

r 1

1- 1—. —-__ ——. _. —_. __ —... -.__ .___— . . .
~ + ~ ~i112  (m ‘r+  ‘t + /2~.)  COs~QQ

@SR )
‘ - 1

Cc)s(?tw)  d,

sin(nflt)  dt.

(7)

and

(8)

One nlay choose tO == –2”/2 so that the integration linlits  bcxon~e synl~i~ctric and the b,,

arc thus seen to be identically zero,

Again, the OFLL’S synchronous detector will pass only that portion of the photode-

tector output that nlatches  its reference input (i.e. the drive oscillator) ili both frequency

ancl phase. ‘1’hc error signal can therefore be written as

c(t) == Aal(ve, g,,, ) + ii(i),
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,

where the fundamental Fourier cocff”icicllt  dcqmlds 011 both  frequency lockixlg error, 1~~ ,

alld the choice of modulation depth, g,,,. Thcti(t)  isthccquivalcnt  lloisc~)roccss  clcatccl

by lll~llti~>lyillg  tllclloiseat  tllel~llotocletcctoro  tlt~Jut with thcoscillato  rsigllal. q’hcerror

signal c(t) is then  low-pass filtered ancl fed brick to t lle laser c.olltrol inputs.

As an alternative to the Fourier series expansion, the photodetector out~)ut  Inay Lc

approximated by a first-order Taylor series ex~)ansion  [5], This approach yields an error

signal

J2
c(i) % --&&.. -g!’!. v, i“ ?i(t),

l’; WHM
(lo)

promotional to v., Hewer (10) is oIdy valid for small g~, and is best viewed as a qualitative

dcxcript  ion of the error signal.

It is, of course, desirable to lliaximize the error  signal for a given laser-vs.-FPE fre-

quency  offset, The fundamental Fourier coefficient is plottccl as a function of lnodu]atioli

clepth  in Fig, 6. Note that the error  signal rcachcs a maximum at approximately 80 KHz,

indicating the existence of an optimal modulation clepth,  For comparison, Fig. 6 also plots

the first-order Taylor series expansion of the error signal,

Figure 7 shows the fundamental Fourier coefficient as a function of modulation depth

for several values of frequency locking error. This figure confirms that the optimal modu-

lation  depth is w 80 KHz and is fairly independent of frequency locking error. Figure  8

shows the fundamental Fourier coefficient as a function of frequency locking error for nlod-

ulation  depths of 70, 80 and 90 KHz. This figure  indicates that the error signal amplitude

is insensitive to small variation in modulation depth for frequency locking errors as large

a.s *5O KHz.

IV. FR E Q U E N C Y- LO C K E D  O PERATION AND EFFECT  OF LooP NO I S E

A simplified block diagram of the OFLL is shown in Fig, 9, where VJIT(~) is the

frcqucmcy  jitter due to laser frequency noise, ve(t) is the frequency error, Z/C(t) is tllc

6



frequency correction, h(t) is the additive lloisc, and A is proportional tc) the laser  signs]

power at the input of the F~)E. The 10C)1)  gain I( is t]le product of the laser’ tuning coefflcicvlt

and all other amplifici  gains, and .F(s) is tllc loop filter trallsfcr  fmlction,  TIJe fullcticm

gN1, (ve) is a nonlinear function of v~, and is the fundalncmta] Fourier cocfllcicxlt  cwaluatccl

at the optimal  modulation dcptl] of 80 KHz, When the frequency locking error is small

thf2 IK)l] ]iIICaI’  fU1lCtiOll  gN1, (V~) call bc a])I)IOXilllatd aS

9NI, (l’e) ~ tiNI,(0)~e,

where gNl, (0) is the derivative of 9N1, (V~ ) with respect to Ve

C!xact  and approximate forms of gNl,(l/e ) arc plottecl  ill Fig.

(11)

evaluated at Ve = O. ‘1’hc

10; this plot verifies tlmt

approximation (11 ) is accurate provided the frequency locking error is less than *3O KIIz,

It can be shown that the OFLL closed loop transfer function, from VJI’J’(~) tc) vC(t), is

[6]
Ag~~,(o)KF(s)

11] (s) = –----, ------ -----—
s i“ AgNL(o)KF($)  ‘

(12)

where F(s) is the loop filter transfer function. The transfer function froln v~~l(i!) to v,(i),

Hz(s), is related to the closed loop transfer function by .?3Z(s) == 1 – 131 (s),

The  performance of the OFLI.  is affected by both additive noise alld frequency noise,

When the loop is operating in the linear region, the effects of individual noise sources can

be deternlined  separately and then combined to obtain the overall result [7], The variance

in frequency offset due to additive noise can be written as

(13)

where  SAN(f)  is the one sided power spectral dc.nsity  (PSD) of the additive noise [6, 7,

9]. The  contribution due to frequency jitter can be calculated as

(14)
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where  SJ17(j)  is the PSD of the frequalcy jitter [6, 7, 9]. I’hc PSD of the frcqumlcy jitter

can lx further expanded (Appendix A) as:

‘J’’(f)= [%312[”+ ?-+3
O<j <co, (15)

whm-c At rcprcscnts the photon lifetime of the FPII. ‘1’hc photon lifetime is related to the

FPE’s ~~~w~~h~ by ~w~~M % I/(nAt).

For a suitable  choice of F(s), H2(.j27rf) will have zeros at ~ == O, clmracteristic  of

a perfect second-order loop [6, 7]. ‘l%is loop will then  k unconditionally stable  allcl

the zeros of liz(j2nf)  at ~ == O will conq)ensate  for the poles of the frequculcy  jitter

spectrum, allowing the loop to accurately track low frequency fluctuations, Moreover, a

perfect  linearized second-order loop will also have a theoretically infinite  pull-in range for

frequency acquisition [6], For these reasons, F(s) is chosen to be of the forln

1 +-72s
F(s) = -–T;---- .

For a perfect second-order OFLL, the dalnping  factor,

13~, arc given by [7]

and

respect ivcl y.

When  the

. . ~–—..-._..———

(16)

(, and one sidccl loop bandwidth,

4T1T2

(17)

(18)

additive noise is dominated by shot noise with one sided power spectral

density No [Watts/Hz], then the variance

O;N ,.

due to additive noise becomes

--:-2-1–- III, , (19)
flgN1,(0)



where  p == & . The  CO1ltrihUtiOIl  of frcquc]lcy jittm to t~le variance can be written, using

(15)as

=’ u:, 4- o;/f +- f7;/f2  , (20)

Whm! g;, a~,f, anda:,f,  arethccc}lltrih~ltiolls  oftllev’llitc,  l/~, ancl 1/~2 com~)oncntsof

the frequency noise.

For a general perfect OFI.L,  the above intcgyals  for u:,, u :/f ~ al’ d u~,f, arc very difficult

to evaluate  analytically. However, some simplifications can bc maclc  if the OF’LI, is assumed

to bc critically damped, i.e. ( == 1. Dctailecl  calculations of these ( = 1 integrals for each

of the frequency noise contributions arc given in Appendices B, ~, and D. Tlm results

are sunllnarized  below, where ~L == 5/(47”2) fcm a critically-damped, perfect second-order

OFLI,.

The  white frequency noise contribution is calculated in Appendix B:

0: = ~ ----- --- ~~-
32 (BLL!it) At { ’ -  [’-:l’LAtlexGBIAt)}

When 131,At <<1, (21) can be approximated by

0; % :;; (Bl,At << 1).

When B1,At >>1, then exp (-- ~l?I,At) N O, and (21) can be reduced to

(21)

(22)

(23)

The contribution of the 1/~  component can not be calculated in a closed form. How-

ever it is calculated in terxns of exponential integrals in Appendix ~ as

'-AL-{E'(:B'A`)cx')( :B'A`)+Ei(:B1JAt)ex~(-~B'At)} ~
(24)

u?/f = IG (BI, At)
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where El(z), and Ei(x)  are know’11 as expollentia]  integrals given  by [12],

J

w c–’
El(z)= # (Iargzl  < 7r), a n d

T

Ei(~)=--~[El(-z+  imo)-t El(-.r-im)]. (25)

llquation  (24) may bea~]proxil~-latccl  fo~extrcl~~ev  al~lesof ill, Ai to obtain some physical

insight.

When ill, At <<1, the approximate expression for (24) can be obtained, using  series

expansion of El(z), as

(26)

where ~ = 0.577 . . . is Euler’s constant, (hi the other hand, when B1, At, >> 1, (24) can

be approximated using the asymptotic expansion of El(z) as

(27)

The contribution of the 1 /f2 frequency ~~oise component is calculated in Appendix D

as

--2--W’- []+:BLA’lex+:@ A’)} ’28)125
U;lfa =

512 (BLAI!)2 J3L

When 13z,At <<1, (28) can bc approximately written as

When ~LAt >>1, then (28) can be rcduccd  to

125 T2 k~
‘f/f2 = 512 (B1, At)2 ~~L-.— -...——— . ..- .— - -_ (B1,At >> 1),

(29)

(30)
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Figure 11 shows the contributions of o:,, a~,~, and o~,fz.  Also shown is tile smn of

these contributions, a~r~. This figure is plotted for At == 1.06 microseconds, kl = 0.1 Ilz,

Lz = 0.’75 x 104 H Z
2, and k~ =: 0.5 x 107 HZ3 as expe.rimenta]ly  mcasumd  in [S].

IICcause the additive noise alld the frequency jitter  arc il~dclm)chmt,  the total fre-

Cluenc. y locking error variance can be written as

1—- B 1,
P9;I,(0)

‘ ‘{3- [1-- :B’A’lex])(--:B’JA’)}+“ ~ ‘—
32 (BLAt) At

5  ‘1 {El(~B1,Af)cxp(~lll,Ai) +Ei(~B1,Ai)ex~, (-~DI,At)}
“ iG(BLAt)

- - – – {1 -  [l+”~B’A’lcx])(  --:B’JAi)}o

~ 125 n2 kz
512 (B1, Ai)2 B1,

(31)

When B1,Ai  <<1, (31) can bc approximately written using (22) , (26) , and (29) as

C7;e w J=– BI, +- ~ Z-
[ 1

51r2 k~1 ‘]  +- kl I  –  ~– ln(;B1,At)  +  —-— (Bl,At << 1), (32)
p&,(0) 16 BL

On the other hand, when BLAt  >> 1, (31) can be approximated using (23) , (27) , ancl

(30) as

D:e % 1— – - BL  +  ~
1 kl 25 kl 125 7r2 k,— - — .  — . —  — _ _ _  ~

32 (B1,At) ~- + 64 (BLAt)2  + 512 (B1,At)2  BL

(B1,At >> 1).
p&(0)

(33)

Figure 12 plots the variances due to additive noise ancl frequency jitter, as well as

their sum. The additive noise plot assumes p = 90 dB-Hz. It can be seen from Fig. 12

that performance of the OFLL is frequency noise limited if the loop bandwidth is. less than

x 2300 Hz and otherwise shot noise limited. A family of curves representing total rms

frequency locking error for different values of p is plotted in Fig, 13 as a function of loop

bandwidth. Figure 13 shows that an rms frequency locking error of less than 600 Hz ca~i
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bc achieved with a loop bandwidth of 500 Hz for p greater than 80 dll. Tl~e fact that

this lc}cking error is much less than 30 KHz illdicatcs  that the linear  approxilnation  (11)

is self-consistent,

Fig. 13 alsc) illciicates  the existence of an optimal loop bandwidth resulting in a

minimuln  frcquenc  y locking error variance. This optilnal  bandwidth dcpcxlds  on p alld is

about 500 Hz for p between  80 dB alld 100 cID. The optimal loop bandwidth of all OFL1,

can bc calculated for any given p .

V. StJMMARY  AND C; ONCI,USIONS

A basic laser frequency locking system employing a Fabry-Perot et alon and frequency

modulating oscillator was outlined. A theoretical analysis of this optical frequency locking

lc)op (OFLL) estimated its performance in the presence of shot noise and frequency noise

typical of diode-pumped Nd:YAG lasers. In paticular:

a)

b)

c)

Contributions from shot noise  and each of the frequency noise components to total

frequency locking error were analyzed and displayed as a function of loop bandwidth.

An optimal modulation dcpt}l,  gn,, of = 80 KHz that maximized the error signal

amplitude and minimized frequency locking error was iclent ified,

‘l’he expected performance of the OFL1,, m measured by u;, was then estimated for

this choice of optimal modulation depth.

The analysis shows that an rrns frequency locking error, i.e. an offset of laser-vs.-FPE

transmission peak frequency, of less than 600 Hz can be achieved with a loop bandwidth

of 500 Hz for p greater than 80 dB. This verifies that the linear approximation (11) is

self-consistent for analyzing the proposed frequency locking subsystem using FPE. 13ased

on this analysis, an optimum loop bandwidt]l  which minimizes frequency locking error can

be determined for a given p.
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The  frequency noise process, .fN(~ ), is luodelccl  to cent ain a white component, a 1/~

componcnlt, al~d  a I /~2 colnponcxit.  Mathematically, tlw 1’S11 of frequmlcy Iloisc is xnocicled

as

(A l )

where k] [Hz] is the one sided PSD of the white component, The constants k2 [HZ2] and

k 3 [HZ3] indicate the magnitudes of the 1/~  and 1 /j2 components of the frequency noise

respectively. The frequency noise model given ill (Al ) was verified experimentally in [8]

and indirectly in [9, 10]. The parameters associated with the frequency noise of the a

diode-pumped Nd:YAG ring laser were detcrlnined  to be kl =: 0.1 Hz, kz = 0.75x 104 HZ
2,

and k3 = 0,5 x 107 HZ3 [8].

High frequency content of the frequency noise is limited by the fact the finite response

t imc of the FPE, The detected frequency jitter can be related to the frequency xioise by

the following model as
t

~J]q.(i)  =- ;-j

!
fN(T) dT, (A2)

t-Ai

where At is represents the photon lifetime of the FPE. The photon lifetime is related to

the FPE’s Z+WIIM  by ~wHM  = I/(~At)

Equation (A2) is a convolution of the frequency noise with a time window of height

1 /At, and width At. Mathematically

/+ca
~JI~(i)  =

1
_m fN(~)c(~  -  ?-)~~ = fN(t) * C(t), (A3)

where

{

1 if O<t < A t
c(t) =

O otherwise.
(A4)

13y using the fundamcnta.1  theorem of the power s~)ectrunl  [13], the PSD of the frequency

14



jitter becomes

‘J’’(f)= [?%)12s’N(f’
= [%%’12[”+ ?+ H O< f<m. (A5)
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APP~NIJM B: CAI,CUI,ATIION OF WHirrE FHW(JKNCY  NOISE (JONTRIEIUTION

The frequency locking error variance clue to white frequency noise for a critically-

cla.mpccl,  perfect sec.ond-order OFLL can be writtml  as

J

cm

02 = klw
~$~~j~

2[%%’12” (111)
o

where  o = 5n/(21?1,  ). This can be rewritten as

{ J J
0: = ~ “ m —f:—-2df - m -----------

2 (nAt)z
}

0 [(%)2+  j’] o [(:)2+ ~21Z cOs(zTfA’)dj  . (B2)

Using 3.2E ~ and 3.733.3 of [11], along with L’H6pitol’s rule of calculus, (B2) rcduccs  to

–L{’- [l--:}’’JI’x~(~ ~BIA1)})} ‘B3)a:.~–l
32 (I?l,At)  At

When J3z,At << 1, then (B3) can be approximated by truncating tile Taylor  series

expansion of cxp (– ~l?l, At) as

1 kl

‘%37
(B1,At  << 1), (B4)

When Bz,At >>1, then exp (- ~B1,At) w O, ancl (B3) can be reduced to

5 1 k,—— —... —-
‘: % =~B1,At)  At

(Bl,Ai >> 1). (B5)
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APPENDJX  C: CALCULATION  OF I/f FR};QUENCY NOICT ~ONqRIIILJ’lloN

The frequcmcy  locking error  variallcc CIUC to 1/~ frequency Iloisc for a crit ical]y -

dampccl, perfect second-order OFLL can bc writtel]  as

J

m

U;,f == k~

2“--” 2[’+%$?12;’”4 +- CY’f’
( c l )

o
k’ m

/
J= .—-_ . ——. -.. —...

(TAi)~  o
[(;)2+ ;~si112(TJAi)  ~j

(C2)

Noting that ~~ == – J A
[(+)2+ s’] , d~~~~iJ and using integration by parts, (C2) can be

reduced to

k’ m—-—
J‘:/f = (2nAt) o

-------~-------z  [sin (27r JAt)] dj.

[(;)2+ @
(C3)

Using 3,723.1 of [11], (C3) is evaluated as

where El(z) and Ei(x) arc known as exponential integrals and are given by [12],

El(z) ==
!

m c–f
–t– dt (Iargz[  < z), and (C5)

z

Ei(x)  = –~ [El(-.x +ico) + El(-.x – ice)] (x> o). (C6)

More insight into u~,f may be obt aincd by approximating (C4) for the two extreme cases

of 131, At << 1 and BLAt  >> 1 .

When the arguments of El (z) and Ei(x)  are very small, they can be approximated by

truncating their series expansion [12]:

1
%–7–111Z+2-~Z2, and (a’)
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Therefore, for z <<1

[EI(r)cxp(z) + Ei(r)exl)(--r)] X 2r(l - ~ - lnz).

Using (C9),  the expression for the variance due to 1/~ fmcluc)lcy  noise simplifies to

(C”9)

(c ’ lo )

When the arguments of El (z) and E;i(z) arc large, they can be approximated by

truncating their asymptotic expansions [12], as

El(z) = ~
{
l-. ~+. ;– ~+...

}
([argz[  < ~7r)

2 .23

=’:2{ }

-2 1
— 1.-+$ , and

z

Ei(x)  = ~r-
{

14-:+- $+-!3 +...
}

(r> o)

‘:-{1-’”++$}

Therefore, for z >>1

(Cll)

(C12)

(C13)

Using (C13),  the expression for the variance due to 1/j frequency noise now simplifies to

(C14)
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APPENDIX D: CALCULATION OF 1/~2 FREQUENCY  NOISE CONTRIDLJTION

The frequency locking error variance due to 1 /.f2 frequency noise for a critically-

dampcc]  perfect second- orcler OFLL can b~ writ ten as

(Dl)

!l?his can be rewritten as

Using 3.251.4, and 3.729.1 of [11], (D2) reducm  to

When BLAt << 1, then (1)3) can bc approximated by truncating the Taylor series

expansion of exp (– ~ BLAi)  as

2 ~ 5X2 k3_
‘1/f2 * 16 III,

(131,At << 1).

When BLAt >>1, then exp (– ~BLAt) x O, and (1)3) can be reduced to

(b4)

125 7r2 k3
u;,f2 w -—- —–.—---- ___

512 (BLAi)2 BL

(DLAi >> 1). (D5)
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Figure 1. The conceptual diagram of frequency stabilization subsystem using Fabry-Perot  EtaIon and dithering oscillator.
Only the oc)tical path of !he laser #l is shown.
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experimentally measured to be 300 KHz,



Figure 4. Normalized photodetector output as the laser is modulated by quadrature dithering oscillator:
no frequency locking error and zero noise.

Figure 5. Normalized photodetector output as the laser is modulated by quadrature dithering oscillator:
small frequency locking error and zero noise.
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Figure 6. Fundamental Fourier coefficient as a function of modulation depth for some frequency locking error.
Also shown is a first-order Taylor series expansion, valid for small modulation depth.
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Figure 7. Fundamental Fourier coefficient as a function of modulation depth for several values
of frequency locking error.
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Figure 12. Contributions of frequency jitter and additive noise to the frequency locking error. Also
shown is the sum of these contribution. This figure is plotted for p -90 dB-Hz.
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